

SNIA Hot Banding

Steven Johnson

SNIA Emerald[™] Training

SNIA Emerald Power Efficiency Measurement Specification, for use in EPA ENERGY STAR®

SNIA_{III} **2** July 14-17, 2014 Green Storage Initiative SNIA Emerald™ Training ~ July 14-17, 2014 SNIA Emerald™

SNIA Emerald[™]

Introduction to SNIA Emerald Hot Banding test

Concatenated Work Space

Discussion of the components of the workload

Random

Agenda

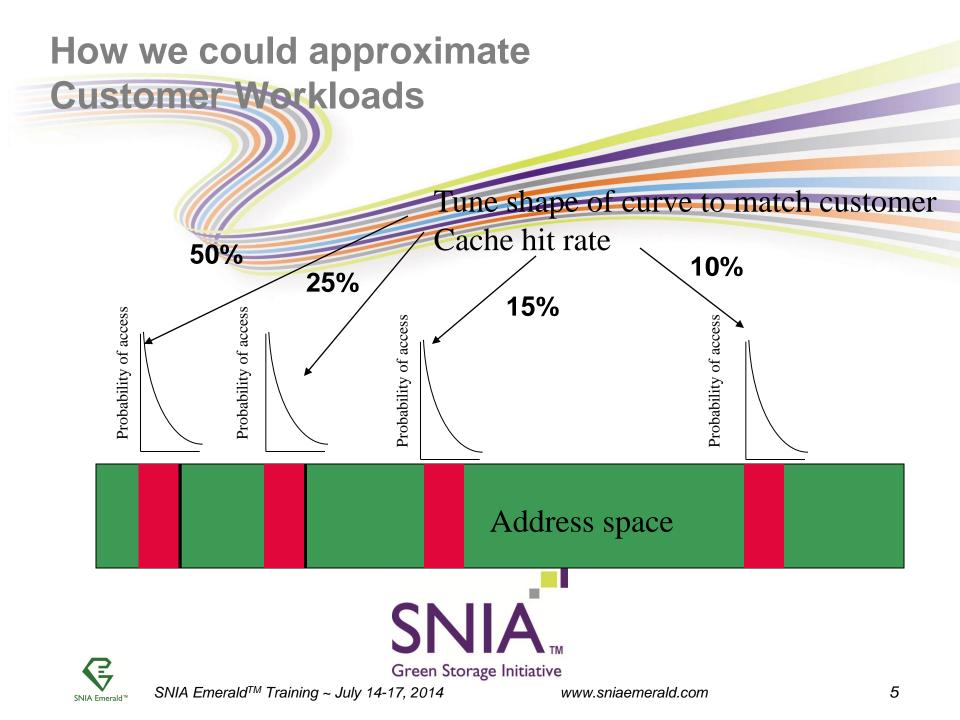
- Five Sequential read streams
- Three Sequential write streams
- Four hot bands
- Complex mix of transfer sizes.

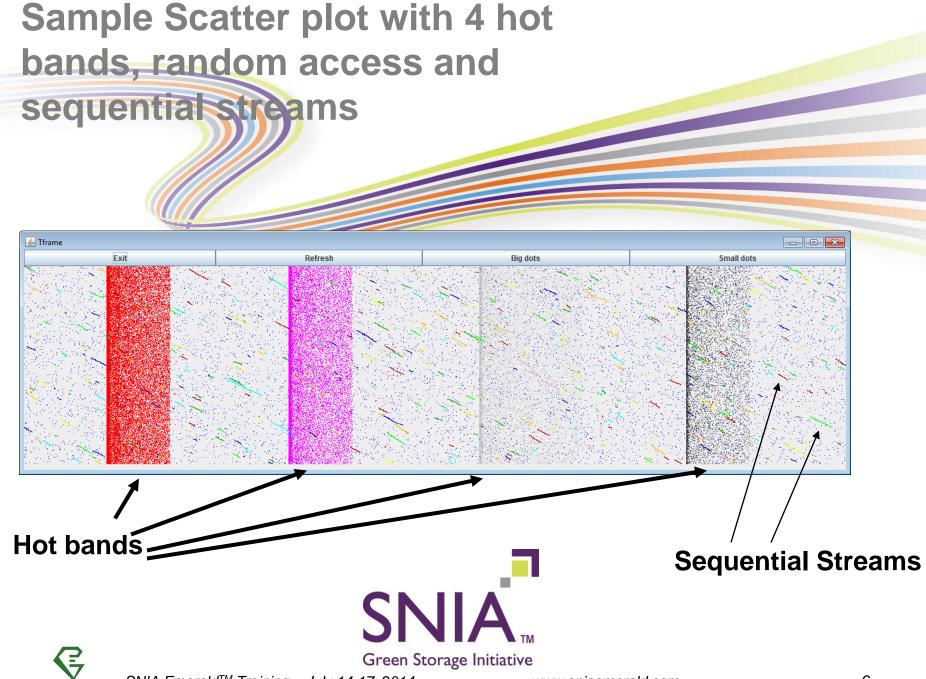
SNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Hot Band

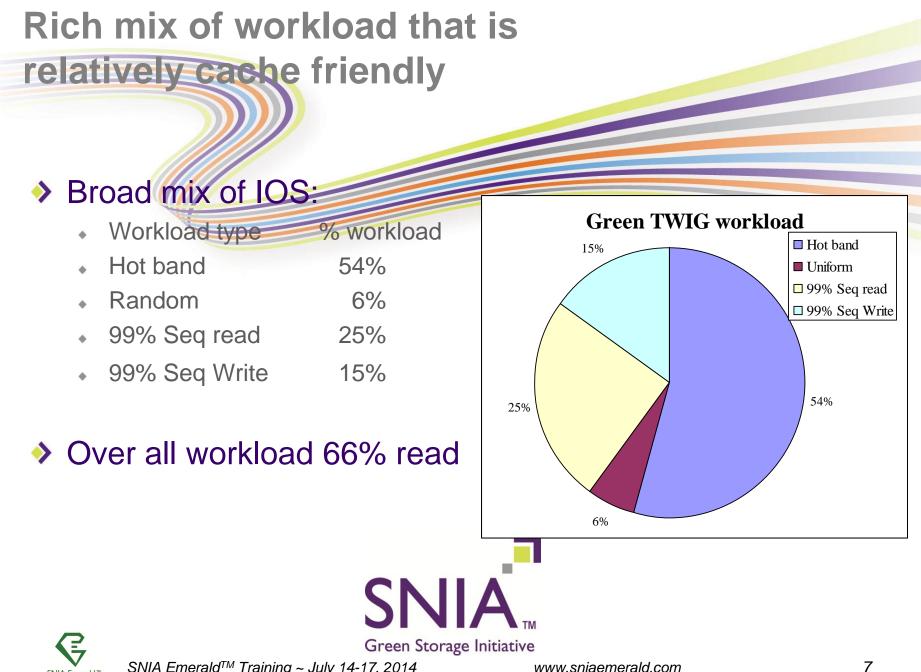
Problem

- Uniform access across storage does not address performance aspect of cache in customer-like environments
- Customer environments do not have uniform access across storage unless they are doing a full back up
- End of the day, goal is to create a fairly complex workload to measure the power consumption – not a pure performance benchmark


SNIA Emerald[™] Training ~ July 14-17, 2014

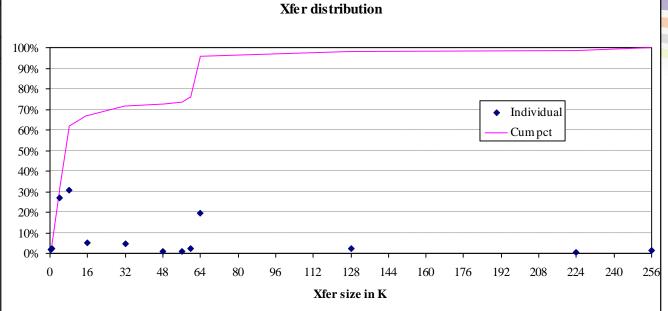

Concatenated Work Space

- First part of the process is the configure your storage.
- Determine your optimal configuration (Raid 1, Raid 5, ??, Stripe size, Volume Manager settings, etc)



SNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Emerald


SNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Emerald

Recent study of 1.1 Billion IOs 2,500+ traces Abstracted the distribution below

Κ	Individual	Cumpct	
0.5	2%	2%	-
1	2%	4%	_
4	27%	31%	
8	31%	62%	
16	5%	67%	
32	5%	72%	
48	1%	73%	
56	1%	74%	
60	2%	76%	
64	20%	96%	
128	2%	98%	
224	0%	98%	
256	2%	100%	

Average = ~27K

SNIA Emerald[™] Training ~ July 14-17, 2014

Vdbench script	
compratio=2 # Compression Ratio 2:1	

sd=sd1,lun=e:\junk\hotband1,size=500m # Define Storage definition (file for testing purposes)

SNIA Emerald[™] Training ~ July 14-17, 2014

Vdbench script (cont)

wd=default,xfersize=(8k,31,4K,27,64K,20,16K,5,32K,5,128K,2,1K,2,60K,2,512,2,256K,2,48K,1,56K,1),rdpct=70
wd=wd_uniform,skew=6,sd=sd*,seekpct=rand,rdpct=50
wd=wd_hot1,sd=sd*,skew=28,seekpct=rand,range=(10,18)
wd=wd_hot2,sd=sd*,skew=14,seekpct=rand,range=(32,40)
wd=wd_hot3,sd=sd*,skew=7,seekpct=rand,range=(55,68)
wd=wd_hot4,sd=sd*,skew=5,seekpct=rand,range=(80,88)

5 read sequential walkers

wd=wd_99rseq1,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq2,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq3,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq4,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq5,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq5,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq5,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq5,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq5,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100 wd=wd_99rseq5,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=100

wd=wd_99wseq1,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=0 wd=wd_99wseq2,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=0 wd=wd_99wseq3,sd=sd*,skew=5,xfersize=(8k,33,4K,29,64K,22,16K,6,32K,5,128K,3,256K,2),seekpct=1,rdpct=0 # Actual run definition

rd=rd1_hband,wd=HOTwd*,iorate=MAX,warmup=30,elapsed=6H,interval=10,pause=30,th=XX

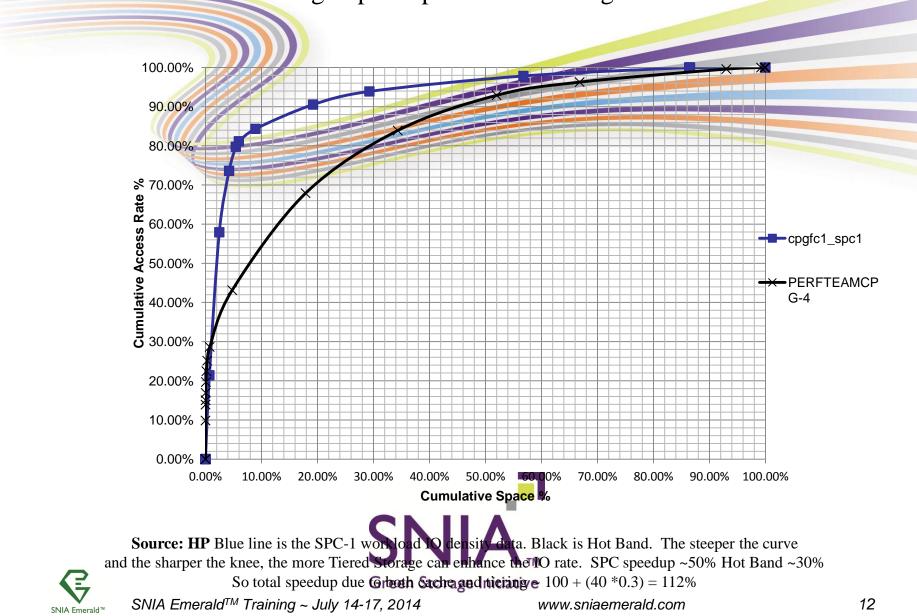
Green Storage Initiative

SNIA Emerald[™] Training ~ July 14-17, 2014

Hot Band Workloads and High End HP Storage Products

Chuck Paridon, HPES Master Storage Performance Architect

SNIA


SNIA Emerald[™] Training

SNIA Emerald Power Efficiency Measurement Specification, for use in EPA ENERGY STAR[®]

June 24-27, 2013Green Storage InitiativeSNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Green TWG Cache Friendly Performance Comparison Chart Tiered Storage Speedup on 3PAR Storage Products

Hot Band IO Patterns

- The Hot Band workload is comprised of several different IO streams, some of which contain hot spots, or regions of more intense IO demand.
- This results in varying degrees of logical block address re-referencing in certain regions of the overall IO space that can be either contained with the cache of an array, or can be placed on storage devices that deliver a higher IO rate.

SNIA EmeraldTM Training ~ July 14-17, 2014

Hot Band IO Patterns

IO Profile	% of	Read/Wri	IO Size	Access	Usable
	workloa	te	(KiB)	Pattern	Address
	d	Percenta			Range
		ge			
Write Stream 1	5	0/100	See Table 12	Sequenti al	0-100%
Write Stream 2	5	0/100	See Table 12	Sequenti al	0-100%
Write Stream 3	5	0/100	See Table 12	Sequenti al	0-100%
Read Stream 1	5	100/0	See Table 12	Sequenti al	0-100%
Read Stream 2	5	100/0	See Table 12	Sequenti al	0-100%
Read Stream 3	5	100/0	See Table 12	Sequenti al	0-100%
Read Stream 4	5	100/0	See Table 12	Sequenti al	0-100%
Read Stream 5	5	100/0	See Table 12	Sequenti al	0-100%
Uniform Random	6	50/50	See Table 12	Random	0-100%
Hot Band 1	28	70/30	See Table 12	Random	10 -18%
Hot Band 2	14	70/30	See Table 12	Random	32-40 %
Hot Band 3	7	70/30	See Table	Random	55-63 %
Hot Band 4	5	70/30	See Table	Random	80-88 %

Hot Band IO Profile

Hot Bands concentrate 54% of the 10 in 32% of the space

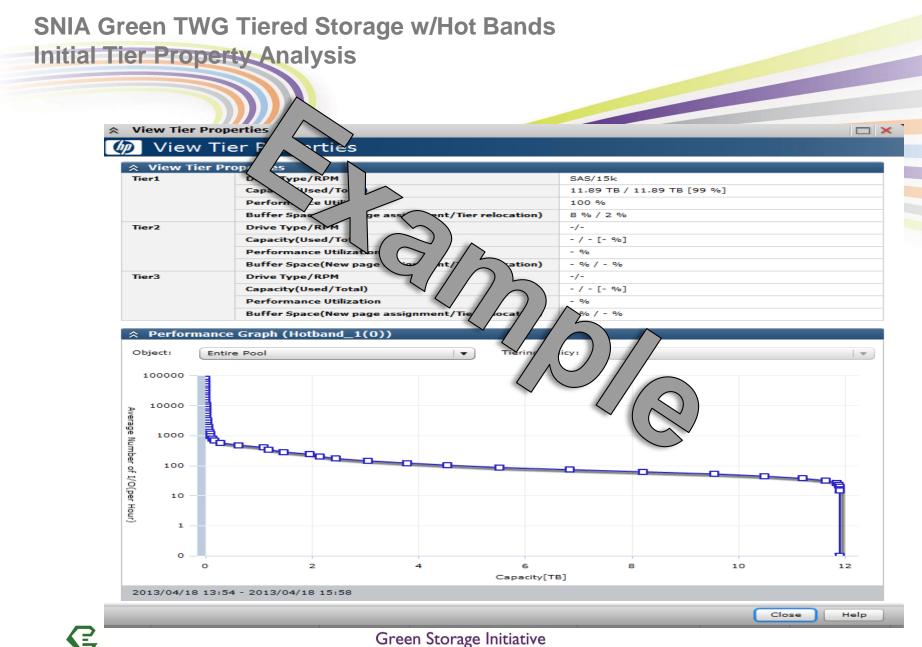
SNIA Emerald[™] Training ~ July 14-17, 2014

Hot Band IO Patterns

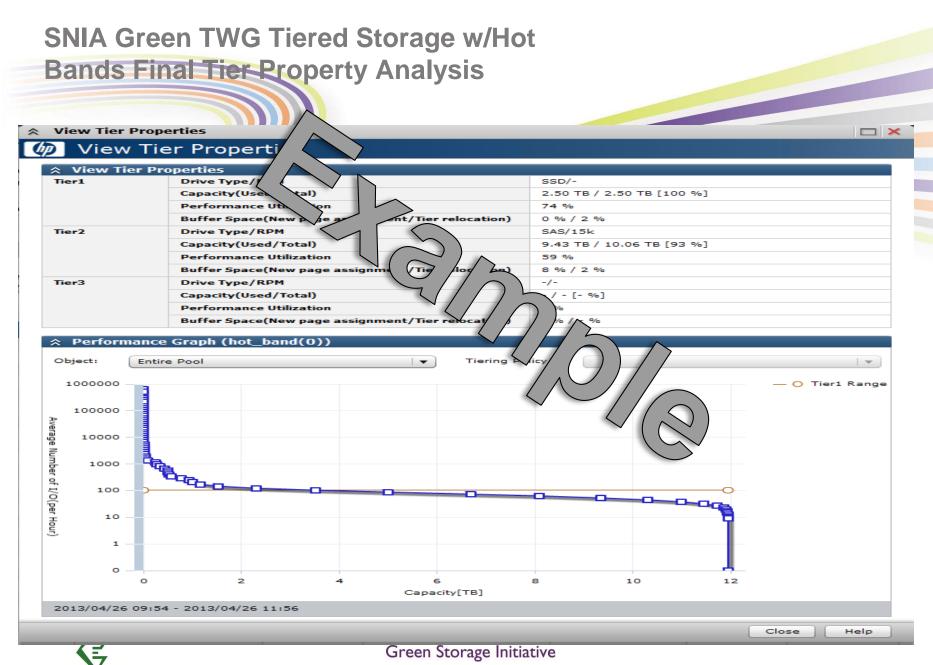
- The Hot Band workload when run on High End Storage demonstrates the power/performance advantage of two product features
 - Array Based Cache
 - Storage Tiering
- Although the initial goal was solely cache focused, there is also a benefit of implementing faster tiers in the product such as HP P9500 Smart Tiering

SNIA Emerald[™] Training ~ July 14-17, 2014

Compari	een TWG Ca ison Chart C 9500 Storag	Cache and T					
	Hot IOPS		Rnd IOPS	Rnd RT	C/WS ratio	Cache Hit Ratio Hot Band vs Rnd	
Small Array	4,330	32.8 ms	-4LO	3.4 ms	<<	N/A	
Large Array Cache Assist only	39,900	8.97 ms	18,410 <	12. ny		60%/24%	
Large Array (Tiered)	42,870	5.77 ms	N/A	N/A	~3%	60%/24%	
SNIA Emerald™	SNIA Emerald™ T		reen Storage Initiat 2014		ld.com	16	

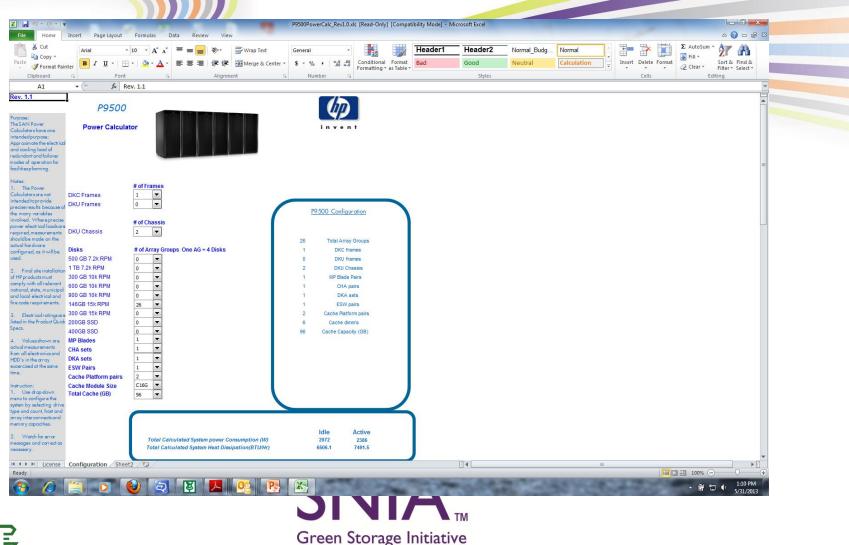

SNIA Green TWG Tiered Storage w/Hot Bands Analysis and Tier Configuration Process

- The Workload Analysis Process Consists of Two Steps
- I. Create a single pool large enough to hold the desired working set
- 2. Run the Hot Band workload on that pool and use the analysis tools to produce a report guiding the composition of the tier(s)
- The tier construction process involves 2 decision points.
- I. Which technology to deploy
- 2. The capacities of the tier(s)
- The following slides illustrate an example of these activities


SNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Emerald[™] SNIA Emerald[™] Training ~ July 14-17, 2014

www.sniaemerald.com


18

SNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Emerald™

The HP P9500 Power Calculator

SNIA Emerald™

SNIA Emerald[™] Training ~ July 14-17, 2014

SNIA Green TV Bands Primary		0		
Configuration	Tiepe	Power	IOPS	IOPS/Watt
Large Array (Initial)	15k RPM	7,491 Watt	18/10	2.457
Large Array (Cache Assist)	I 5k RPM	7,491 Watts	39 00	5.326
Large Array (Tiered)	15k + SSD	7,283 Watts	42870	5.886
P		SNIA Green Storage Initiative		
SNIA Emerald [™] SNIA Emera	ald™ Training ~ July 14-17	-	iaemerald.com	21

SNIA Green TWG Hot Band Workload Conclusions and Observations

- The Hot Bar orkload is amenable to performance optimization, both storage subsystem cache and the proper deploting of tiered storage.
- As a result of high rates (~60%) the overall performance contributor of the storage is limited.
- In addition to the increase in (132%), there is also a corresponding decrease of er consumption from the substitution of SSDs in the c (132%) uration
- The net effect of these two parameter changes is a 140% improvement in the SNIA primary active metric (IOPS/Watt) of

Green Storage Initiative

SNIA Emerald[™] Training ~ July 14-17, 2014